
File I/O, Exceptions

Check out FilesAndExceptions from SVN





 Look at GameOfLifeWithIO
◦ GameOfLife constructor has 2 listeners which are 

local inner classes

◦ ButtonPanel constructor has 3 listeners which are 
local anonymous classes

 Feel free to use as examples for your project



 Input: FileReader and Scanner

 Output: PrintWriter and println

 Be kind to your OS: close() all files

 Letting users choose: JFileChooser and 

File

 Expect the unexpected: Exception handling

 Refer to examples when you need to…

Q1-4



 Used to signal that something went wrong:
◦ throw new EOFException(“Uneven number of ints”);

 Can be caught by exception handler
◦ Recovers from error

◦ Or exits gracefully

Q5



 Java has two sorts of exceptions

 Checked exceptions: compiler checks that 
calling code isn’t ignoring the problem
◦ Used for expected problems

 Unchecked exceptions: compiler lets us 
ignore these if we want
◦ Used for fatal or avoidable problems

◦ Are subclasses of RunTimeException or Error

Q6-7



 Dealing with checked exceptions

◦ Can propagate the exception

 Just declare that our method will pass any exceptions 
along

 public void loadGameState() throws IOException

 Used when our code isn’t able to rectify the problem

◦ Can handle the exception

 Used when our code can rectify the problem

Q8



 Use try-catch statement:

◦ try {
// potentially “exceptional” code

} catch (ExceptionType var) {

// handle exception

}

 Related, try-finally for clean up:

◦ try {
// code that requires “clean up”

} finally {

// runs even if exception occurred

}

Can repeat this 
part for as many 
different 
exception types as 
you need.

Q9-10



 Show me what you have completed:
◦ CRC cards

◦ UML – as complete as you can – will help coding later.

◦ User stories for cycle 1

 Ask questions as needed!

 Work on the rest, due tomorrow.
◦ There’s a quick partner eval; see HW20

◦ If you are done, you have my blessing to start coding 
cycle 1

◦ Use any reasonable combination of:

 group meetings and/or

 dividing up the work


